The 19th Japanese Olympiad in Informatics (JOI 2019/2020)
Spring Training Camp/Qualifying Trial
March 20-23, 2020 (Komaba, Tokyo)
Contest Day 3 - Harvest

Harvest

IOI Farm is an agricultural farm growing apples. It is famous for being located around a large circular lake.
In IOI Farm, there are N employees, numbered from 1 to N. There are M apple trees, numbered from 1 to M. The perimeter of the lake is L meter.
In the beginning, the employee $i(1 \leq i \leq N)$ is waiting at the distance of A_{i} meter from the northernmost point of the lake, in the clockwise direction. The values of $A_{i}(1 \leq i \leq N)$ are distinct. The apple tree $j(1 \leq j \leq M)$ is grown up at the distance of B_{j} meter from the northernmost point of the lake, in the clockwise direction. The values of $B_{j}(1 \leq j \leq M)$ are distinct. Moreover, there is no apple tree at the initial position of any employee.

Due to a special breed improvement of the apple trees in IOI Farm, every apple tree can have at most one apple at the same time. Moreover, if an apple is harvested from the apple tree, it will have a new apple exactly after C seconds. At time 0 , every apple tree has an apple, and every employee starts walking around the lake in the clockwise direction. The speed of every employee is 1 meter per second. If an employee arrives at an apple tree with an apple, then the employee will always harvest it (If an apple tree has a new apple at the same time when an employee arrives there, then the employee will harvest it too). We ignore the time it takes for an employee to harvest an apple.

President K is an stock holder of IOI Farm. Since you are a manager of IOI Farm, President K asked you to report on the efficiency of the employees. More precisely, President K wants to know the following Q values.

For each $k(1 \leq k \leq Q)$, the number of apples harvested by the employee V_{k} until time T_{k} (including an apple harvested exactly at time T_{k} if it exists).

Write a program which, given the number of the employees, the number of the apple trees, the perimeter of the lake, the time it takes for an apple tree to have a new apple, the positions of the employees and the apple trees, and information on Q queries, calculates the number of harvested apples for each query.

Input

Read the following data from the standard input. All the values in the input are integers.

```
N M L C
A1.\cdots. A
B
Q
V}\mp@subsup{T}{1}{
\vdots
VQ}\mp@subsup{T}{Q}{
```


Output

Write Q lines to the standard output. In the k-th line $(1 \leq k \leq Q)$, output the answer to the k-th query.

Constraints

- $1 \leq N \leq 200000$.
- $1 \leq M \leq 200000$.
- $N+M \leq L \leq 1000000000$.
- $1 \leq C \leq 1000000000$.
- $0 \leq A_{i}<L(1 \leq i \leq N)$.
- $A_{i}<A_{i+1}(1 \leq i \leq N-1)$.
- $0 \leq B_{j}<L(1 \leq j \leq M)$.
- $B_{j}<B_{j+1}(1 \leq j \leq M-1)$.
- $A_{i} \neq B_{j}(1 \leq i \leq N, 1 \leq j \leq M)$.
- $1 \leq Q \leq 200000$.
- $1 \leq V_{k} \leq N(1 \leq k \leq Q)$.
- $1 \leq T_{k} \leq 1000000000000000000=10^{18}(1 \leq k \leq Q)$.

Subtasks

1. (5 points) $N \leq 3000, M \leq 3000, Q \leq 3000$.
2. (20 points) $T_{k} \geqq 1000000000000000=10^{15}(1 \leqq k \leqq Q)$.
3. (75 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
3273	2
146	1
05	1
3	
17	
23	
38	

- At time 1 , the employee 2 harvests an apple from the apple tree 2 , and the employee 3 harvests an apple from the apple tree 1.
- At time 3, the employee 2 arrives at the apple tree 1 . Since it has no apple at that time, the employee does no harvest an apple.
- At time 4, the employee 1 harvests an apple from the apple tree 2 .
- At time 6 , the employee 1 harvests an apple from the apple tree 1 . The employee 3 arrives at the apple tree 2 , but does not harvest an apple since the apple tree has no apple at that time.
- At time 8 , the employee 2 harvests an apple from the apple tree 2 . The employee 3 arrives at the apple tree 1 , but does not harvest an apple since the apple tree has no apple at that time.

As the number of apples harvested by the employee 1 until time 7 (including an apple harvested at time 7) is 2 , output 2 in the first line.

The 19th Japanese Olympiad in Informatics (JOI 2019/2020)
Spring Training Camp/Qualifying Trial March 20-23, 2020 (Komaba, Tokyo)

Sample Input 2	Sample Output 2
53206	146
0 481216	7035
21114	7
9	7359360
41932	202
293787	10320
189	0
598124798	628
12684	18
1137598	
32	
38375	
4237	

The 19th Japanese Olympiad in Informatics (JOI 2019/2020)
Spring Training Camp/Qualifying Trial
March 20-23, 2020 (Komaba, Tokyo)

Contest Day 3 - Harvest

Sample Input 3	Sample Output 3
81521733608	33230868503053
(0)12 71961111128152206	3
$\begin{array}{llllllllllllllllllllll}4 & 34 & 42 & 67 & 76 & 81 & 85 & 104 & 110 & 117 & 122 & 148 & 166 & 170 & 212\end{array}$	5
14	1
2223544052420046341	123542793648997
386357593875941375	8
4892813012303440034	165811220737767
1517156961659770735	8
7415536186438473633	7
6322175014520330760	1
7557706040951533058	
6640041274241532527	7
5286263974600593111	7535161012043
8349405886653104871	132506837660717
1987277313830536091	
5989137777159975413	
250689028127994215	
7445686748471896881	

