The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Spring Training Camp/Qualifying Trial March 20-23, 2021 (Komaba, Tokyo)

Food Court

IOI Center is a training center equipped with living facilities. There is a food court for large groups. In the food court, there are N shops in a row, numbered from 1 to N. In front of each shop, there is a queue for customers. Customers will make a line in each queue.

Today, there are M groups staying in IOI Center, numbered from 1 to M. Members of groups will make lines in a rather strange way to enjoy chatting.

In this food court, shops sometimes give free desserts to customers in their queue. JOI-kun, working in this food court, has a job to record the groups the customers who receive free desserts belong to.

No customers were making lines in the queues when the shops were closed. Today, when the shops were open, Q events happened in the queues. The i-th event is one of the following.

Join For every shop whose number is between L_{i} and R_{i}, inclusive, K_{i} customers from the group C_{i} joined the queue at its end.

Leave For every shop whose number is between L_{i} and R_{i}, inclusive, if there were K_{i} or more customers in the queue, K_{i} customers from the beginning of the queue left. Otherwise, all the customers in the queue left.
Service If there were B_{i} or more customers in the queue of the shop A_{i}, the shop gave a free dessert to the B_{i}-th customer from the beginning of the queue. Otherwise, the staff of the shop ate the free dessert.

Unfortunately, JOI-kun lost the record of the groups the customers who received the desserts belong to. He plans to recover the record using information of the above Q events.

Write a program which, given the number of shops, groups, events, and the details of the events, determines for each "Service" whether a customer received a free dessert or not. If a customer received a free dessert, the program should find the index of the group the customer belongs to.

Input

Read the following data from the standard input. Given values are all integers.
$N M Q$
(Query 1)
\vdots
(Query Q)
In (Query $i)(1 \leq i \leq Q)$, space-separated integers are written. Let T_{i} be the first integer. Then (Query i)
means as follows.

- If $T_{i}=1$, four more integers $L_{i}, R_{i}, C_{i}, K_{i}$ are written in this order. This means the i-th event is "Join", and, for every shop whose number is between L_{i} and R_{i}, inclusive, K_{i} customers from the group C_{i} joined the queue at its end.
- If $T_{i}=2$, three more integers L_{i}, R_{i}, K_{i} are written in this order. This means the i-th event is "Leave", and, for every shop whose number is between L_{i} and R_{i}, inclusive, if there were K_{i} or more customers in the queue, K_{i} customers from the beginning of the queue left. Otherwise, all the customers in the queue left.
- If $T_{i}=3$, two more integers A_{i}, B_{i} are written in this order. This means the i-th event is "Service", and, if there were B_{i} or more customers in the queue of the shop A_{i}, the shop gave a free dessert to the B_{i}-th customer from the beginning of the queue. Otherwise, the staff of the shop ate the free dessert.

Output

Output one line to the standard output for each "Service", i.e., for each event $i(1 \leq i \leq Q)$ with $T_{i}=3$. If a customer received a free dessert in the i-th event, the output should contain the number which represents the group the customer belongs to. If the staff of the shop ate the free dessert in the event i, the output should contain 0 .

Constraints

- $1 \leq N \leq 250000$.
- $1 \leq M \leq 250000$.
- $1 \leq Q \leq 250000$.
- T_{i} is either 1,2 , or $3(1 \leq i \leq Q)$.
- If $T_{i}=1$, we have $1 \leq L_{i} \leq R_{i} \leq N, 1 \leq C_{i} \leq M, 1 \leq K_{i} \leq 1000000000(1 \leq i \leq Q)$.
- If $T_{i}=2$, we have $1 \leq L_{i} \leq R_{i} \leq N, 1 \leq K_{i} \leq 1000000000(1 \leq i \leq Q)$.
- If $T_{i}=3$, we have $1 \leq A_{i} \leq N, 1 \leq B_{i} \leq 1000000000000000\left(=10^{15}\right)(1 \leq i \leq Q)$.
- $T_{i}=3$ holds for at least one $i(1 \leq i \leq Q)$.

Subtasks

1. (2 points) $N \leq 2000, Q \leq 2000$. For each $i(1 \leq i \leq Q)$ with $T_{i}=1$ or $T_{i}=2$, we have $K_{i}=1$.
2. (5 points) $N \leq 2000, Q \leq 2000$.
3. (7 points) $N \leq 65000, Q \leq 65000$. For each $i(1 \leq i \leq Q)$ with $T_{i}=1$, we have $R_{i}-L_{i} \leq 10$ and $K_{i}=1$.
4. (21 points) $M=1$.
5. (15 points) $N \leq 65000, Q \leq 65000$. For each event $i(1 \leq i \leq Q)$ with $T_{i}=1$ or $T_{i}=2$, we have $K_{i}=1$.
6. (13 points) $N \leq 65000, Q \leq 65000 . T_{i}=1$ or $T_{i}=3(1 \leq i \leq Q)$.
7. (26 points) $N \leq 65000, Q \leq 65000$.
8. (11 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
357	2
12352	0
112224	4
323	
2133	
312	
12342	
332	

In the following, a queue is written as an integer sequence representing the groups of the customers in the queue. For example, if there are 3 customers in the queue of a shop and the groups they belong to are $1,2,2$ from the beginning of the queue, we write it as $(1,2,2)$. The empty queue is written as () .
In this sample input, 7 events happened.

1. The 1 -th event is "Join", and 2 customers from the group 5 joined the queue of each of the shops 2,3 . After that, the queues of the shops $1,2,3$ became (), $(5,5),(5,5)$.
2. The 2 -nd event is "Join", and 4 customers from the group 2 joined the queue of each the shops 1,2 . After that, the queues of the shops $1,2,3$ became $(2,2,2,2),(5,5,2,2,2,2),(5,5)$.
3. The 3 -rd event is "Service". There were 6 customers in the queue of the shop 2 . Since it is larger than or equal to 3 , the third customer in the queue received a free dessert. Since this customer belongs to the
group 2, output 2 .
4. The 4 -th event is "Leave". For each of the shops 1,2, there were 3 customers in the queue. Thus 3 customers left the queue of each of the shops 1,2 . Since there were less than 3 customers in the queue of the shop 3 , all the customers in the queue left. After that, the queues of the shops $1,2,3$ became (2), ($2,2,2$), ().
5. The 5 -th event is "Service". There were 1 customer in the queue of the shop 1 . Since it is smaller than 2 , the staff of the shop 1 ate the free dessert. Hence output 0 .
6. The 6 -th event is "Join", and 2 customers from the group 4 joined the queue of each of the shops 2,3 . After that, the queues of the shops $1,2,3$ became (2), (2, 2, 2, 4, 4), (4,4).
7. The 7 -th event is "Service". There were 2 customers in the queue of the shop 3 . Since it is larger than or equal to 2 , the second customer received a free dessert. Since this customer belongs to the group 4 , output 4.

This sample input satisfies the constraints of Subtasks 2, 7, 8 .

Sample Input 2				Sample Output 2
3	4	7		
1	1	2		
1	1	4		
1	1	3		
4	1			
2	2	3		
1		0		
2	1	3		
1				
1	1	2		
2	1			
3	1	1		
3	3	2		

This sample input satisfies the constraints of Subtasks $1,2,3,5,7,8$.

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Spring Training Camp/Qualifying Trial March 20-23, 2021 (Komaba, Tokyo)

Sample Input 3	Sample Output 3
18332621831822	0
1106761160918151683574906362	22166
3687091	32334
12924015637922166957318472	0
1140541815028284597183925	82845
2112033122908587808357	8750
257819160939215041262	60918
336674524274467	
1358546986632334322730299	
113847230115069454256926	
144192158235875084192710	
3544571077490708	
210592110384979714505	
24459479244311724477	
316096597183926	
18874810169739148373927458	
34116658039001	
191501137591205480958877326	
277775169655135756956	
112497570476091815666764	
14783951716144688732270998	
3114514774994894	
348645169986425	

