Sightseeing in Kyoto

Kyoto City is a worldwide sightseeing place. It is also known as a city with grid of streets. You are now visiting Kyoto City for sightseeing. You are planning to visit a famous spot on foot. You want to arrive there as early as possible. In this task, we consider the following simplified situation.

In this city, there are H streets in the east-west direction, and W streets in the south-north direction. The shape of the city is a grid of $(H-1) \times(W-1)$ cells. The crossing of the i-th street $(1 \leq i \leq H)$ from the north and the j-th street $(1 \leq j \leq W)$ from the west is denoted by (i, j).

Different streets may have different width, material, and crowdedness. Your walking speed may be different for different streets. For each street, your walking speed is determined as follows.

- If you walk on the i-th street $(1 \leq i \leq H)$ from the north for the unit length, it takes A_{i} seconds. In other words, for each $c(1 \leq c \leq W-1)$, it takes A_{i} seconds to walk from the crossing (i, c) to the crossing $(i, c+1)$.
- If you walk on the j-th street $(1 \leq j \leq W)$ from the west for the unit length, it takes B_{j} seconds. In other words, for each $r(1 \leq r \leq H-1)$, it takes B_{j} seconds to walk from the crossing (r, j) to the crossing $(r+1, j)$.

In order not to destroy the beautiful landscape of Kyoto City, you are not allowed to walk outside the streets.
Now you are in the crossing $(1,1)$. You want to walk to the crossing (H, W). Since you will be tired if you walk for long distance, you do not want to make a detour. You will not walk to the north or west direction. Under this condition, you want to arrive at the destination as early as possible.

Write a program which, given information of the streets, calculates the minimum time to walk from the crossing $(1,1)$ to the crossing (H, W) without making a detour.

Input

Read the following data from the standard input. Given values are all integers.

```
HW
A1 A 的的
B1 B2}\cdots\mp@subsup{B}{W}{
```


Output

Write one line to the standard output. The output should contain the minimum time (seconds) to walk from the crossing $(1,1)$ to the crossing (H, W) without making a detour.

Constraints

- $2 \leq H \leq 100000$.
- $2 \leq W \leq 100000$.
- $1 \leq A_{i} \leq 1000000000\left(=10^{9}\right)(1 \leq i \leq H)$.
- $1 \leq B_{j} \leq 1000000000\left(=10^{9}\right)(1 \leq j \leq W)$.

Subtasks

1. (10 points) $H \leq 1000, \quad W \leq 1000$.
2. (30 points) $A_{i} \leq 1000(1 \leq i \leq H), \quad B_{j} \leq 1000(1 \leq j \leq W)$.
3. (60 points) No additional constraints.

Sample Input and Output

$\left.\begin{array}{|l|l|}\hline \text { Sample Input 1 } & \text { Sample Output 1 } \\ \hline 2 & 2 \\ 1 & 3 \\ 2 & 5\end{array}\right) 5$

There are two ways to walk from the crossing $(1,1)$ to the crossing $(2,2)$ without making a detour.

- Walk in the following way: crossing $(1,1) \rightarrow(1,2) \rightarrow(2,2)$. It takes $A_{1}+B_{2}=1+5=6$ seconds.
- Walk in the following way: crossing $(1,1) \rightarrow(2,1) \rightarrow(2,2)$. It takes $B_{1}+A_{2}=2+3=5$ seconds.

Since the minimum time is 5 seconds, output 5 . These two ways are described in the following figure. An integer in the figure is the time needed to walk for the unit length on the corresponding street.

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial
March 20-23, 2022 (Komaba, Tokyo)

This sample input satisfies the constraints of all the subtasks.

Sample Input 2	Sample Output 2			
5	5			20
7	1	5	2	8
7	2	4	1	6

For example, if you walk from the crossing $(1,1)$ to the crossing $(5,5)$ in the following way, it takes 20 seconds. Since it is impossible to walk in 19 seconds or less, output 20. An integer in the figure is the time needed to walk for the unit length on the corresponding street.

This sample input satisfies the constraints of all the subtasks.

Sample Input 3	Sample Output 3		
46	543362989	866044086	813602010
454863204	54373747395		
71574269	17945210	688720933	392135202
38174709	168241720	27374	

This sample input satisfies the constraints of Subtasks 1,3.

