Growing Vegetables is Fun 5

Bitaro, who has been enjoying gardening for many years, is planning to grow a plant called Bita-radish starting this spring.

Bitaro has prepared $2 N$ Bita-radish seedlings. The seedlings are numbered from 1 to $2 N$, and Bitaro plans to arrange them in this order for cultivation. The size of seedling $i(1 \leq i \leq 2 N)$ is A_{i}. Bitaro wants every seedling to get enough sunlight, so the sizes of the seedlings satisfy the following conditions:

- $A_{1} \leq A_{2} \leq \cdots \leq A_{N} \leq A_{N+1}$.
- $A_{N+1} \geq A_{N+2} \geq \cdots \geq A_{2 N-1} \geq A_{2 N} \geq A_{1}$.

Note that seedling 1 is the smallest and seedling $N+1$ is the largest.
Bitaro has also prepared N red flowerpots and N blue flowerpots, each of which also has a certain size. The size of the j-th $(1 \leq j \leq N)$ red flowerpot is B_{j}, and the size of the k-th $(1 \leq k \leq N)$ blue flowerpot is C_{k}. Bitaro plants one Bita-radish seedling in each of these total $2 N$ flowerpots, and arranges the flowerpots in a row so that seedlings $1,2, \ldots, 2 N$ are in this order.

Considering the appearance, the $2 N$ flowerpots must be arranged in a beautiful order. Here, a beautiful order means an arrangement of flowerpots such that there exist consecutive N flowerpots with the same color. More precisely, an arrangement of flowerpots is said to be a beautiful order if and only if there exists an integer l between 1 and $N+1$ inclusive such that the colors of the flowerpots planted with seedlings $l, l+1, \ldots, l+N-1$ are all the same.

When a seedling of size y is planted in a flowerpot of size x, the difficulty of cultivation for that pair is the absolute value $|x-y|$. Bitaro's workload in growing Bita-radish is the maximum difficulty of cultivation among the $2 N$ pairs of flowerpots and seedlings.

Write a program which, given the information about the Bita-radish seedlings and flowerpots, finds the minimum possible value of Bitaro's workload when planting the seedlings so that the flowerpots are arranged in a beautiful order.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)
Contest 2 - Growing Vegetables is Fun 5

Input

The input is given from Standard Input in the following format:

$$
\begin{aligned}
& N \\
& A_{1} A_{2} \cdots A_{2 N} \\
& B_{1} B_{2} \cdots B_{N} \\
& C_{1} C_{2} \cdots C_{N}
\end{aligned}
$$

Output

Print a single value - the minimum possible value of Bitaro's workload when planting the seedlings so that the flowerpots are arranged in a beautiful order - in a single line to Standard Output.

Constraints

- $1 \leq N \leq 300000$.
- $1 \leq A_{i} \leq 10^{9}(1 \leq i \leq 2 N)$.
- $1 \leq B_{j} \leq 10^{9}(1 \leq j \leq N)$.
- $1 \leq C_{k} \leq 10^{9}(1 \leq k \leq N)$.
- $A_{1} \leq A_{2} \leq \cdots \leq A_{N} \leq A_{N+1}$.
- $A_{N+1} \geq A_{N+2} \geq \cdots \geq A_{2 N-1} \geq A_{2 N} \geq A_{1}$.
- All input values are integers.

Subtasks

1. (4 points) $N \leq 5$.
2. (5 points) $N \leq 10$.
3. (21 points) $N \leq 2000$.
4. (37 points) All values of A_{i} are distinct. Additionally, $A_{N}<A_{2 N}$ holds.
5. (33 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
2	2
1263	
25	
43	

In this sample input, Bitaro can achieve a workload of 2 by planting the seedlings as follows:

- Plant seedling 1 in the first red flowerpot. The difficulty of cultivation for this pair is $|2-1|=1$.
- Plant seedling 2 in the second blue flowerpot. The difficulty of cultivation for this pair is $|3-2|=1$.
- Plant seedling 3 in the first blue flowerpot. The difficulty of cultivation for this pair is $|4-6|=2$.
- Plant seedling 4 in the second red flowerpot. The difficulty of cultivation for this pair is $|5-3|=2$.

The colors of the flowerpots planted with seedlings 2 and 3 are both blue, so the flowerpots are arranged in a beautiful order.

It is impossible to achieve a workload less than 2 when planting the seedlings so that the flowerpots are arranged in a beautiful order. Therefore, the output is 2 .

This sample input satisfies the constraints of all subtasks.

Sample Input 2	Sample Output 2
9	8
$\begin{array}{lllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10\end{array}$	
2741764106	
689371954	

This sample input satisfies the constraints of subtasks 2,3,4 and 5.

Sample Input 3	Sample Output 3
7	3
$\begin{array}{llllllllllllll}13 & 16 & 18 & 18 & 21 & 22 & 22 & 23 & 23 & 21 & 19 & 17 & 15 & 14\end{array}$	
$\begin{array}{llllllll}24 & 15 & 18 & 25 & 24 & 19 & 11\end{array}$	

This sample input satisfies the constraints of subtasks 2,3 and 5.

