The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)

Card Collection

JOI-kun is enthusiastic about collecting cards in a card game. Each card in the card game has two integers representing its strength and cost. To obtain a new card, JOI-kun brings N cards to a card exchange. Each card is numbered from 1 to N. The strength of card $i(1 \leq i \leq N)$ is S_{i} and the cost of card i is V_{i}.

There are two machines available in the card exchange. If you insert two cards, A and B, into one of the machines, you will be able to receive any card C satisfying the following conditions.

- If you use the first machine, then the strength of C must be equal to the maximum of the strength of A and B , and the cost of C must be equal to the maximum of the cost of A and B .
- If you use the second machine, then the strength of C must be equal to the minimum of the strength of A and B , and the cost of C must be equal to the minimum of the cost of A and B .

JOI-kun plans to use the machines exactly $N-1$ times to obtain a new card. To do this, he lines up the N cards in a row from card 1 to card N. He then repeats the following operation $N-1$ times.

Choose two adjacent cards, exchange them with a new card using one of the machines, and place the new card where the chosen two cards were in the row before the operation.

After performing $N-1$ operations, JOI-kun will have only one card left. The strength and cost of this card will depend on the operations he performs. JOI-kun has a list of M cards that he wants to obtain after performing $N-1$ operations. The j-th card $(1 \leq j \leq M)$ is represented by a pair of integers (T_{j}, W_{j}), where T_{j} is the strength and W_{j} is the cost of the j-th card. Write a program that, given information about JOI-kun's cards and the list of cards he wants to obtain, determines all the cards in the list that he can obtain after performing $N-1$ operations.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N M \\
& S_{1} V_{1} \\
& S_{2} V_{2} \\
& \vdots \\
& S_{N} V_{N} \\
& T_{1} W_{1} \\
& T_{2} W_{2} \\
& \vdots \\
& T_{M} W_{M}
\end{aligned}
$$

Output

Write one line to the standard output. The output should contain the indices of all the cards in the list that JOI-kun can obtain after performing $N-1$ operations in increasing order.

Constraints

- $2 \leq N \leq 200000$.
- $1 \leq M \leq 200000$.
- $1 \leq S_{i} \leq 10^{9}(1 \leq i \leq N)$.
- $1 \leq V_{i} \leq 10^{9}(1 \leq i \leq N)$.
- $1 \leq T_{j} \leq 10^{9}(1 \leq j \leq M)$.
- $1 \leq W_{j} \leq 10^{9}(1 \leq j \leq M)$.
- Given values are all integers.

Subtasks

1. (11 points) $N \leq 20, M \leq 10$.
2. (38 points) $N \leq 2000, M \leq 10$.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)
3. (22 points) $M \leq 10$.
4. (29 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1	
5	3	13
1	3	
2	2	
4	4	
1	3	
1	1	
2	3	
2	1	
4	4	

For example, JOI-kun can obtain a card with strength 2 and cost 3 in the following way.

1. Exchange card 4 and card 5 for a card with strength 1 and cost 1 .
2. Exchange card 3 and the card received in the first operation for a card with strength 1 and cost 1 .
3. Exchange card 1 and card 2 for a card with strength 2 and cost 3 .
4. Exchange the cards received in the second and third operations for a card with strength 2 and cost 3 .

Note that JOI-kun needs to perform the last operation even if he receives a card with strength 2 and cost 3 in the third operation. Even if he receives a certain card after some number of operations, it may not be possible to obtain it after performing $N-1$ operations.
This sample input satisfies the constraints of all the subtasks.

Sample Input 2	Sample Output 2
2	2
1	1
2	2
1	2
2	1

As in this sample output, you should output an empty line if it is impossible to obtain any card in the list after $N-1$ operations.

This sample input satisfies the constraints of all the subtasks.

Sample Input 3	Sample Output 3
8	8
5	2
4	4
1	3
7	8
3	1
8	7
6	5
2	6
1	4
7	2
8	8
3	1
5	6
2	7
6	3
2	5

This sample input satisfies the constraints of all the subtasks.

