The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)
Contest 4 - Escape Route 2

Escape Route 2

The IOI Kingdom consists of N cities lined up from west to east, with cities numbered from 1 to N in order from west.

In the IOI Kingdom, they use Byou as the unit of time. A day in the IOI Kingdom is divided into T units of time. The moment x Byous $(0 \leq x<T)$ after the beginning of a day is called time x. Therefore, when 1 Byou passes from time $T-1$ of a certain day, it becomes time 0 of the next day.

JOI Group is one of the secret sects in the IOI Kingdom. Since it is a secrect sect, members must navigate around the country's checkpoints. Consequently, JOI Group members are restricted to using only flights operated by JOY Airlines for intercity travel.
JOY Airlines operate M_{i} flights departing from city $i(1 \leq i \leq N-1)$. The j-th flight $\left(1 \leq j \leq M_{i}\right)$ departs from city i at time $A_{i, j}$ every day and arrives at city $i+1$ at time $B_{i, j}$ on the same day. Here, $A_{i, j}<B_{i, j}$ holds. These flights allow convenient transfers, and it is also possible to depart from a city immediately upon arrival or stay overnight at the company's airports.

The JOI Group has Q members, numbered from 1 to Q. Member $k(1 \leq k \leq Q)$ places their operational base in city L_{k} and their living base in city R_{k}. Therefore, they want to know the minimum time required to travel from city L_{k} to city R_{k} by selecting the departure time from city L_{k} and flights to use appropriately.

Given information about the flights operated by JOY Airlines and the members of the JOI Group, create a program to find the minimum time required for each member k to travel from city L_{k} to city R_{k}.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)

Contest 4 - Escape Route 2

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N T \\
& M_{1} \\
& A_{1,1} B_{1,1} \\
& A_{1,2} B_{1,2} \\
& \vdots \\
& A_{1, M_{1}} B_{1, M_{1}} \\
& M_{2} \\
& A_{2,1} B_{2,1} \\
& A_{2,2} B_{2,2} \\
& \vdots \\
& A_{2, M_{2}} B_{2, M_{2}} \\
& \vdots \\
& M_{N-1} \\
& A_{N-1,1} B_{N-1,1} \\
& A_{N-1,2} B_{N-1,2} \\
& \vdots \\
& A_{N-1, M_{N-1}} B_{N-1, M_{N-1}} \\
& Q \\
& L_{1} R_{1} \\
& L_{2} R_{2} \\
& \vdots \\
& L_{Q} R_{Q}
\end{aligned}
$$

Output

Output Q lines to the standard output. On the k-th line $(1 \leq k \leq Q)$, output the minimum time required for the member k to travel from city L_{k} to city R_{k}.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial March 20-24, 2024 (Komaba, Tokyo)

Constraints

- $2 \leq N \leq 100000$.
- $2 \leq T \leq 10^{9}$.
- $M_{i} \geq 1(1 \leq i \leq N-1)$.
- $M_{1}+M_{2}+\cdots+M_{N-1} \leq 100000$.
- $0 \leq A_{i, j}<B_{i, j}<T\left(1 \leq i \leq N-1,1 \leq j \leq M_{i}\right)$.
- $1 \leq Q \leq 300000$.
- $1 \leq L_{k}<R_{k} \leq N(1 \leq k \leq Q)$.
- Given values are all integers.

Subtasks

1. (6 points) $N \leq 2000, M_{i}=1(1 \leq i \leq N-1)$.
2. (8 points) $N \leq 2000, M_{i} \leq 5(1 \leq i \leq N-1)$.
3. (17 points) $M_{i}=1(1 \leq i \leq N-1)$.
4. (23 points) $M_{i} \leq 5(1 \leq i \leq N-1)$.
5. (36 points) $N \leq 90000, Q \leq 90000, M_{1}+M_{2}+\cdots+M_{N-1} \leq 90000$.
6. (10 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
410000	500
1	400
100300	10500
2	
200400	
300600	
1	
500600	
3	3
1	4

As a demonstration, let us designate the day on which member k departs from city L_{k} as day 1.
Member 1 can travel from city 1 to city 3 in 500 Byou by following actions:

1. Depart from city 1 at time 100 on day 1 and arrive at city 2 at time 300 on day 1 .
2. Depart from city 2 at time 300 on day 1 and arrive at city 3 at time 600 on day 1 .

Since there is no faster way to travel, output 500 on line 1.
Member 2 can travel from city 2 to city 4 in 400 Byou by following actions:

1. Depart from city 2 at time 200 on day 1 and arrive at city 3 at time 400 on day 1 .
2. Depart from city 3 at time 500 on day 1 and arrive at city 4 at time 600 on day 1 .

Since there is no faster way to travel, output 400 on line 2.
Member 3 can travel from city 1 to city 4 in 10500 Byou by following actions:

1. Depart from city 1 at time 100 on day 1 and arrive at city 2 at time 300 on day 1 .
2. Depart from city 2 at time 300 on day 1 and arrive at city 3 at time 600 on day 1 .
3. Depart from city 3 at time 500 on day 2 and arrive at city 4 at time 600 on day 2 .

Since there is no faster way to travel, output 10500 on line 3.
This sample input satisfies the constraints of subtasks $2,4,5,6$.

The 23rd Japanese Olympiad in Informatics (JOI 2023/2024)
Spring Training/Qualifying Trial
March 20-24, 2024 (Komaba, Tokyo)

Contest 4 - Escape Route 2

Sample Input 2	Sample Output 2
$6 \quad 10000$	30700
1	
100300	
1	
400700	
1	
500600	
1	
300	900
1	800
1	6

This sample input satisfies the constraints of all subtasks.

