
International	Olympiad	in	Informatics	2018
September	2–7th,	2018
Tsukuba,	Japan
Practice	Tasks

bubblesort2
English	(ISC)

Bubble	Sort	2
Bubble	 sort	 is	 an	 algorithm	 to	 sort	 a	 sequence.	 Let's	 say	 we	 are	 going	 to	 sort	 a	 sequence	

	of	 length	 	 in	non-decreasing	order.	Bubble	sort	swaps	two	adjacent	numbers
when	 they	 are	 not	 in	 the	 correct	 order.	 Swaps	 are	 done	 by	 repeatedly	 passing	 through	 the
sequence.	 Precisely	 speaking,	 in	 a	 pass,	 we	 swap	 	 and	 	 if	 ,	 for	

	 in	 this	order.	 It	 is	known	 that	any	sequence	can	be	sorted	 in	non-decreasing
order	by	some	passes.	For	a	sequence	 ,	we	define	the	number	of	passes	by	bubble	sort	as	the
number	of	passes	needed	to	sort	 	using	the	above	algorithm.

JOI-kun	has	a	sequence	 	of	length	 .	He	is	going	to	process	 	queries	of	modifying	values	of	 .
Queries	are	numbered	from	 	through	 .	To	be	specific,	 in	the	query	 	(),	the
value	of	 	is	changed	into	 .

JOI-kun	wants	to	know	the	number	of	passes	by	bubble	sort	for	the	sequence	after	processing	each
query.

Implementation	details

You	should	implement	the	following	function	count_scans	to	answer	 	queries.

int[]	count_scans(int[]	A,	int[]	X,	int[]	V)

A:	an	array	of	integers	of	length	 	representing	the	initial	values	of	the	sequence.
X,	V:	arrays	of	integers	of	length	 	representing	queries.

This	function	should	return	an	array	 	of	integers	of	length	 .	For	each	 ,	 	should
be	the	number	of	passes	by	bubble	sort	for	the	sequence	right	after	processing	the	query	 .

Example

Given	a	sequence	 	of	length	 	and	 	queries:	 .

For	the	first	query,	the	value	of	 	is	changed	into	 .	We	obtain	 .
For	the	second	query,	the	value	of	 	is	changed	into	 .	We	obtain	 .

Bubble	sort	for	 :

	is	not	sorted,	so	the	first	pass	starts.	Since	 ,	we	swap	them	to	get	 .
Since	 ,	we	don't	swap	them.	Since	 ,	we	don't	swap	them.

Bubblesort2 (1 of 2)

Now	 	is	sorted,	so	the	bubble	sort	ends.

Hence,	the	number	of	passes	by	bubble	sort	is	 	for	 .

Bubble	sort	for	 :

	is	not	sorted,	so	the	first	pass	starts.	Since	 ,	we	swap	them	to	get	 .
Since	 ,	we	swap	them	to	get	 .	Since	 ,	we	don't	swap	them.
	 is	 not	 sorted	 yet,	 so	 the	 second	 pass	 starts.	 Since	 ,	 we	 swap	 them	 to	 get	

.	Since	 ,	we	don't	swap	them.	Since	 ,	we	don't	swap	them.
Now	 	is	sorted,	so	the	bubble	sort	ends.

Hence,	then	number	of	passes	by	bubble	sort	is	 	for	 .

The	 files	 sample-01-in.txt	 and	 sample-01-out.txt	 in	 the	 zipped	 attachment	 package
correspond	to	this	example.	Other	sample	inputs/outputs	are	also	available	in	the	package.

Constraints

	()
	()

	()

Subtasks

1.	 (17	points)	 ,	
2.	 (21	points)	 ,	
3.	 (22	 points)	 ,	 ,	 	 (),	 	 (

)
4.	 (40	points)	No	additional	constraints

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	
line	 :	
line	 	():	

The	sample	grader	prints	the	return	value	of	count_scans	in	the	following	format:

line	 	():	

Bubblesort2 (2 of 2)

