Review of Werewolf

Problem

Given a connected undirected graph with N vertices and M edges. The vertices are numbered from 0 through $N-1$.
Q queries are given. The query $i(0 \leq i \leq Q-1)$ is represented by four integers $S_{i}, E_{i}, L_{i}, R_{i}$ satisfying $L_{i} \leq S_{i}$ and $E_{i} \leq R_{i}$. You want to travel from the vertex S_{i} to the vertex E_{i}. Your route must satisfy the following condition:

- Assume that you visit the vertices $V_{0}, V_{1}, V_{2}, \ldots, V_{p}$ in this order ($V_{0}=S_{i}, V_{p}=E_{i}$). Then there is an index $q(0 \leq q \leq p)$ such that $L_{i} \leq V_{0}, V_{1}, \ldots, V_{q}$ and $V_{q}, V_{q+1}, \ldots, V_{p} \leq R_{i}$ are satisfied.

You start the travel in human form, transform yourself from human form to wolf form at the vertex V_{q}, and finish the travel in wolf form.

Your task is to determine whether it is possible to travel from the vertex S_{i} to the vertex E_{i}.

Subtasks and Solutions

Subtask 1 (7 points)
$N \leq 100, M \leq 200, Q \leq 100$
You choose a V vertex where you transform yourself from human form to wolf form.
For each choice of V, you need to decide whether it is possible to travel from S_{i} to V in human form (i.e. only using vertices whose indices are $\geq L_{i}$), and to decide whether it is possible to travel from V to E_{i} in wolf form (i.e. only using vertices whose indices are $\leq R_{i}$.

The time complexity of this solution is $O(Q N(N+M))$.
Subtask 2 (8 points)
$N \leq 3000, M \leq 6000, Q \leq 3000$

Determine the set of vertices you can visit from S_{i} in human form, and determine the set of vertices you can visit from E_{i} in wolf form.

Then check whether these two sets intersect.
The time complexity of this solution is $\mathrm{O}(\mathrm{Q}(\mathrm{N}+\mathrm{M}))$.
Subtask 3 (34 points)
The cities are located on a line. In other words, $M=N-1$ and no city is directly connected to more than 2 cities.

Let U_{i} be the set of the vertices which are reachable from S_{i} by passing only vertices with index at least L_{i}. Similarly, let V_{i} be the set of the vertices which are reachable from E_{i} by passing only vertices with index at most R_{i}. Note that U_{i} forms a range on the line on which cities are located. This range can be efficiently computed using doubling or Segment tree. V_{i} can be similarly computed. Then, we can answer the query by checking whether these two ranges interesect.

Subtask 4 (51 points)

No additional constraints
We can construct a rooted tree so that U_{i} forms a subtree. This can be done using adding vertices to a disjoint set union structure in the descending order of indices. Then, using Euler-Tour on this tree, we can obtain a sequence of vertices and every U_{i} corresponds to a contiguous segment of this sequence. We can compute similar sequence for V_{i}. Then, we can answer the query by checking whether two segments for U_{i} and V_{i} shares a vertex. This can be done by the sweep line algorithm with a segment tree. The time complexity of this solution is $O((Q+M) \log N)$.

