

## Review of Werewolf

## Problem

Given a connected undirected graph with N vertices and M edges. The vertices are numbered from 0 through N-1.

Q queries are given. The query i ( $0 \le i \le Q - 1$ ) is represented by four integers  $S_i, E_i, L_i, R_i$  satisfying  $L_i \le S_i$  and  $E_i \le R_i$ . You want to travel from the vertex  $S_i$  to the vertex  $E_i$ . Your route must satisfy the following condition:

• Assume that you visit the vertices  $V_0, V_1, V_2, \ldots, V_p$  in this order  $(V_0 = S_i, V_p = E_i)$ . Then there is an index q  $(0 \le q \le p)$  such that  $L_i \le V_0, V_1, \ldots, V_q$  and  $V_q, V_{q+1}, \ldots, V_p \le R_i$  are satisfied.

You start the travel in human form, transform yourself from human form to wolf form at the vertex  $V_q$ , and finish the travel in wolf form.

Your task is to determine whether it is possible to travel from the vertex  $S_i$  to the vertex  $E_i$ .

## Subtasks and Solutions

Subtask 1 (7 points)

 $N \leq 100$  ,  $M \leq 200$  ,  $Q \leq 100$ 

You choose a V vertex where you transform yourself from human form to wolf form.

For each choice of V, you need to decide whether it is possible to travel from  $S_i$  to V in human form (i.e. only using vertices whose indices are  $\geq L_i$ ), and to decide whether it is possible to travel from V to  $E_i$  in wolf form (i.e. only using vertices whose indices are  $\leq R_i$ ).

The time complexity of this solution is O(QN(N+M)).

Subtask 2 (8 points)

 $N \leq 3\,000$  ,  $M \leq 6\,000$  ,  $Q \leq 3\,000$ 

Determine the set of vertices you can visit from  $S_i$  in human form, and determine the set of vertices you can visit from  $E_i$  in wolf form.

Then check whether these two sets intersect.

The time complexity of this solution is O(Q(N+M)).

```
Subtask 3 (34 points)
```

The cities are located on a line. In other words, M = N - 1 and no city is directly connected to more than 2 cities.

Let  $U_i$  be the set of the vertices which are reachable from  $S_i$  by passing only vertices with index at least  $L_i$ . Similarly, let  $V_i$  be the set of the vertices which are reachable from  $E_i$  by passing only vertices with index at most  $R_i$ . Note that  $U_i$  forms a range on the line on which cities are located. This range can be efficiently computed using doubling or Segment tree.  $V_i$  can be similarly computed. Then, we can answer the query by checking whether these two ranges interesect.

Subtask 4 (51 points)

No additional constraints

We can construct a rooted tree so that  $U_i$  forms a subtree. This can be done using adding vertices to a disjoint set union structure in the descending order of indices. Then, using Euler-Tour on this tree, we can obtain a sequence of vertices and every  $U_i$ corresponds to a contiguous segment of this sequence. We can compute similar sequence for  $V_i$ . Then, we can answer the query by checking whether two segments for  $U_i$  and  $V_i$  shares a vertex. This can be done by the sweep line algorithm with a segment tree. The time complexity of this solution is  $O((Q + M) \log N)$ .