## Review of Meetings

## Problem

There are $N$ mountains, numbered from 0 through $N-1$ from left to right. The height of the mountain $i$ is $H_{i}(0 \leq i \leq N-1)$. Exactly one person lives on each mountain.

You are going to hold $Q$ meetings, numbered from 0 through $Q-1$. To the meeting $j$ ( $0 \leq j \leq Q-1$ ), you will invite all people living on the mountains between the mountain $L_{j}$ and the mountain $R_{j}$, inclusive.

For each meeting, you can choose a mountain as the meeting place. If the mountain $x$ is chosen as the meeting place, the cost of the meeting is calculated as follows:

- The cost of the meeting is the sum of the costs of all participants.
- The cost of the participant from the mountain $y$ is the maximum height of mountains between the mountain $x$ and the mountain $y$, inclusive. Particularly, the cost of the participant from the mountain $x$ is $H_{x}$.

For each meeting, you want to find its minimum cost.

## Constraints

- $1 \leq N \leq 750000$
- $1 \leq Q \leq 750000$
- $1 \leq H_{i} \leq 1000000000(0 \leq i \leq N-1)$
- $0 \leq L_{j} \leq R_{j} \leq N-1(0 \leq j \leq Q-1)$
- $\left(L_{j}, R_{j}\right) \neq\left(L_{k}, R_{k}\right)(0 \leq j<k \leq Q-1)$


## Subtasks and Solutions

## Subtask 1 (4 points)

$N \leq 3000, Q \leq 10$
If a meeting place is given, you can calculate the cost of a meeting in $O(N)$. Thus, by testing every possible meeting place, the cost of a meeting can be calculated in $O\left(N^{2}\right)$ time.

The total time complexity is $O\left(N^{2} Q\right)$.
Subtask 2 (15 points)
$N \leq 5000, Q \leq 5000$
By iterating through the moutains with maintaining an upper envelope, you can get costs for all
meeting places in $O(N)$ time.
The total time complexity is $O(N Q)$.

## Subtask 3 (17 points)

$N \leq 100000, Q \leq 100000, H_{i} \leq 2(0 \leq i \leq N-1)$
Find the longest contiguous subsequence consisting only of 1 by SegmentTree. The total time complexity is $O(N+Q \log N)$.

Subtask 4 (24 points)
$N \leq 100000, Q \leq 100000, H_{i} \leq 20(0 \leq i \leq N-1)$
For each meeting, divide the range at the heighest mountains and recursively solve the problem.
If you pre-calculate the answer to some ranges, such as maximal ranges in which heights of all mountains are at most some constant, and you prepare a proper data structure for Range Minimum Queries, you can get the minimum cost of a meeting in $O\left(\max \left\{H_{i}\right\} \log N\right)$ time.

Pre-calculation can be done in $O\left(\max \left\{H_{i}\right\} N\right)$ time.
The total time complexity is $O\left(\max \left\{H_{i}\right\}(N+Q \log N)\right)$.
Subtask 5 (40 points)
No additional constraints.
For convenience, let's assume that all values of $H$ are distinct (this does not matter much). For each meeting, we can assume that the index of the optimal meeting place is greater than or equal to $\operatorname{argmax}_{L \leq i \leq R}\left(H_{i}\right)$, because by reversing the array $H$ and solving the same problem we can get a real answer.

We denote the problem of calculating the minimum cost of a meeting with the range $[L, R]$ as query $[L, R]$.

- Let $\operatorname{Cost}(L, R)$ be the answer to the query $[L, R]$.
- Let $\operatorname{RangeL}(v)$ be the smallest $x$ such that $\operatorname{argmax}_{x \leq i \leq v}\left(H_{i}\right)=v$.
- Similarly, let RangeR $(v)$ be the largest $x$ such that $\operatorname{argmax}_{v \leq i \leq x}\left(H_{i}\right)=v$.
- Also let $S(v)$ be the array of length

$$
\operatorname{RangeR}(v)-\operatorname{RangeL}(v)+1
$$

such that the $i$-th $(0 \leq i \leq \operatorname{RangeR}(v)-\operatorname{RangeL}(v))$ value of $S(v)$ is

$$
\operatorname{Cost}(\operatorname{RangeL}(v), \operatorname{RangeL}(v)+i)
$$

We are going to compute $S(v)$ for all $v$, and then it is easy to get answers to all queries. The order of indices in which we compute $S(v)$ is very important. Here, we use depth-first-search post-order of the cartesian tree of $H$.

We define the cartesian tree of $H$ as the rooted tree such that lowest-common-ancestor of nodes $u$ and $v$ is the node $\operatorname{argmax}_{u \leq i \leq v}\left(H_{i}\right)$.

The cartesian tree can be obtained in linear time by an iteration with a stack data structure. It can be easily seen that every node of the cartesian tree has at most two children, one to the left and another to the right. Let $l c(v)$ be the left child of the node $v$ and $r c(v)$ be the right child of the node $v$ (here we assume that the node $v$ has two children).

Now the remaining task is to somehow merge $S(l c(v))$ and $S(r c(v))$ into $S(v)$. Clearly, first some elements of $S(v)$ is exactly $S(l c(v)$ ).

All we need is to compute $\operatorname{Cost}(\operatorname{RangeL}(v), p)$, for all $p(v \leq p)$.
Since $H_{v}$ is the maximum value in the range $[\operatorname{RangeL}(v)$, $\operatorname{RangeR}(v)]$, you can see

$$
\begin{aligned}
\operatorname{Cost}(\operatorname{RangeL}(v), p)= & \min \left\{\operatorname{Cost}(\operatorname{RangeL}(v), v)+(p-v) \times H_{v},\right. \\
& \left.(v-\operatorname{RangeL}(v)+1) \times H_{v}+\operatorname{Cost}(v+1, p)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\operatorname{Cost}(\operatorname{RangeL}(v), v)+(p-v) \times H_{v}\right)-\left((v-\operatorname{RangeL}(v)+1) \times H_{v}+\operatorname{Cost}(v+1, p)\right) \\
& \leq \quad\left(\operatorname{Cost}(\operatorname{RangeL}(v), v)+(p+1-v) \times H_{v}\right)-\left((v-\operatorname{RangeL}(v)+1) \times H_{v}+\operatorname{Cost}(v+1, p+1)\right)
\end{aligned}
$$

where $p+1 \leq \operatorname{RangeR}(v)$.
The inequality follows from the observation that

$$
\operatorname{Cost}(v+1, p+1)-\operatorname{Cost}(v+1, p) \leq \max _{v+1 \leq i \leq p+1}\left(H_{i}\right) \leq H_{v}
$$

It indicates that there exists a certain index $z$ such that

$$
\operatorname{Cost}(\operatorname{RangeL}(v), p)=\operatorname{Cost}(\operatorname{RangeL}(v), v)+(p-v) \times H_{v}
$$

for all $p \leq z$, and

$$
\operatorname{Cost}(\operatorname{RangeL}(v), p)=(v-\operatorname{RangeL}(v)+1) \times H_{v}+\operatorname{Cost}(v+1, p)
$$

for all $z<p$.
Therefore, you can get $S(v)$ in the following way:

- Let $T$ be the array obtained by adding a certain value to all elements of $S(r c(v))$.
- Update first some elements of $T$ with a certain linear funtion.
- Concatenate $S(l c(v)), \operatorname{Cost}(\operatorname{RangeL}(v), v)$, and $T$.

To carry out these operations fast, we use a compressed representation for $S(v) . S(v)$ is represented by the list of ranges. Each range has a certain linear funciton such that the values of $S(v)$ in the range can be calculaed by the linear function.

Adding a certain value can be done by lazy propagation.
To update first some elements, we simply iterate through $T$ from the beginning. The ranges before the break point is replaced by one range, so the total number of iterations is $O(N)$.

Concatenating two arrays can be done as follows:

- We maintain end points of ranges in a global set and store the information of ranges in a global array. Then, we do not have to do anything for ranges.
- Concatenating laze propagation information for adding can be done by Weighted-union heuristic:
- Let $W(s)$ be the value which should be added to elements of the array $s$.
- When we concatenate two arrays $s$ and $t$, we pick the smaller one and arrange the elements of it so that $W(s)=W(t)$.
- By Weighted-union heuristic this can be done in $O(N \log N)$ time in total.

Getting the answer to a query requires one lower bound operation of the set. Thus in $O(Q \log N)$ time we can get answers to all queries.

The total time complexity is $O((N+Q) \log N)$.

