

Railway Trip 2

IOI Railway Company is operating lines on a railway track. There are N stations in a straight line, numbered from 1 to N. For each i ($1 \le i \le N - 1$), Station i and Station i + 1 are connected directly by a railway track.

IOI Railway Company is operating *M* lines, numbered from 1 to *M*. In Line j ($1 \le j \le M$), the starting station is Station A_j , and the terminal station is Station B_j . A train stops at every station. Namely, if $A_j < B_j$ a train of Line j stops at Station A_j , Station $A_j + 1, ...,$ Station B_j , in this order. If $A_j > B_j$, a train of Line j stops at Station $A_j - 1, ...,$ Station B_j , in this order.

JOI-kun is a traveler. He has Q travel plans. In the k-th plan $(1 \le k \le Q)$, he travels from Station S_k to Station T_k by taking lines.

However, JOI-kun is tired from a long journey. He wants to take a vacant train and get a seat. Thus, JOI-kun decided that he takes a train of a line at a station only if it is the *K*-th or earlier stop from the starting station of the line. In other words, if $A_j < B_j$, he can take a train of Line *j* only at Station A_j , Station $A_j + 1, \ldots$, Station $\min\{A_j + K - 1, B_j - 1\}$. If $A_j > B_j$, he can take a train of Line *j* only at Station A_j , Station $A_j - 1, \ldots$, Station $\max\{A_j - K + 1, B_j + 1\}$. JOI-kun will get out of the train at a station between the station next to where he takes the train and the terminal station, inclusive.

Under these conditions, JOI-kun wants to minimize the number of times of taking trains.

Given the information of the lines of IOI Railway Company and JOI-kun's plans, write a program which calculates, for each of JOI-kun's plans, the minimum number of times of taking trains needed for JOI-kun to achieve it.

Input

Read the following data from the standard input. Given values are all integers.

N KM $A_1 B_1$ $A_2 B_2$ \vdots $A_M B_M$ Q $S_1 T_1$ $S_2 T_2$ \vdots $S_Q T_Q$

Output

Write *Q* lines to the standard output. The *k*-th line $(1 \le k \le Q)$ should contain the minimum number of times of taking trains needed for JOI-kun to achieve the *k*-th plan. If it is not possible to achieve the *k*-th plan, output -1.

Constraints

- $2 \le N \le 100\,000.$
- $1 \le K \le N 1$.
- $1 \le M \le 200\,000.$
- $1 \le A_j \le N \ (1 \le j \le M).$
- $1 \le B_j \le N \ (1 \le j \le M).$
- $A_j \neq B_j \ (1 \leq j \leq M).$
- $(A_j, B_j) \neq (A_k, B_k) \ (1 \le j < k \le M).$
- $1 \le Q \le 50\,000.$
- $1 \le S_k \le N \ (1 \le k \le Q).$
- $1 \le T_k \le N \ (1 \le k \le Q).$

- $S_k \neq T_k \ (1 \leq k \leq Q).$
- $(S_k, T_k) \neq (S_l, T_l) \ (1 \le k < l \le Q).$

Subtasks

- 1. (8 points) $N \le 300$, $M \le 300$, $Q \le 300$.
- 2. (8 points) $N \le 2000$, $M \le 2000$, $Q \le 2000$.
- 3. (11 points) Q = 1.
- 4. (25 points) K = N 1.
- 5. (35 points) $A_j < B_j \ (1 \le j \le M), \ S_k < T_k \ (1 \le k \le Q).$
- 6. (13 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
5 2	1
2	2
5 1	-1
3 5	
3	
5 3	
3 2	
2 1	

In the first plan, JOI-kun travels from Station 5 to Station 3. For example, this plan is achieved if JOI-kun takes a train of Line 1 at Station 5, and get out of the train at Station 3. In total, JOI-kun will take one train. Since it is impossible to achieve the plan by taking less than one train, output 1 in the first line.

In the second plan, JOI-kun travels from Station 3 to Station 2. For example, this plan is achieved if JOI-kun takes a train of Line 2 at Station 3, get out of the train at Station 4, takes a train of Line 1 at Station 4, and get out of the train at Station 2. In total, JOI-kun will take two trains. Since it is impossible to achieve the plan by taking less than two trains, output 2 in the second line.

In the third plan, JOI-kun travels from Station 2 to Station 1. Since it is impossible for JOI-kun to achieve this plan, output -1 in the third line.

This sample input satisfies the constraints of Subtasks 1, 2, 6.

Sample Input 2	Sample Output 2
6 3	1
2	-1
1 6	1
5 1	2
4	
5 1	
6 3	
3 6	
2 1	

This sample input satisfies the constraints of Subtasks 1, 2, 6.

Sample Input 3	Sample Output 3
6 5	-1
4	1
3 1	2
2 4	-1
5 3	1
4 6	
5	
1 5	
3 2	
2 6	
6 3	
5 4	

This sample input satisfies the constraints of Subtasks 1, 2, 4, 6.

Sample Input 4	Sample Output 4
12 1	-1
5	1
1 7	4
10 12	-1
3 5	2
8 10	-1
5 9	1
7	
2 11	
5 8	
3 12	
4 6	
1 9	
9 10	
1 4	

This sample input satisfies the constraints of Subtasks 1, 2, 5, 6.