## Railway Trip 2

IOI Railway Company is operating lines on a railway track. There are $N$ stations in a straight line, numbered from 1 to $N$. For each $i(1 \leq i \leq N-1)$, Station $i$ and Station $i+1$ are connected directly by a railway track.

IOI Railway Company is operating $M$ lines, numbered from 1 to $M$. In Line $j(1 \leq j \leq M)$, the starting station is Station $A_{j}$, and the terminal station is Station $B_{j}$. A train stops at every station. Namely, if $A_{j}<B_{j}$ a train of Line $j$ stops at Station $A_{j}$, Station $A_{j}+1, \ldots$, Station $B_{j}$, in this order. If $A_{j}>B_{j}$, a train of Line $j$ stops at Station $A_{j}$, Station $A_{j}-1, \ldots$, Station $B_{j}$, in this order.

JOI-kun is a traveler. He has $Q$ travel plans. In the $k$-th plan $(1 \leq k \leq Q)$, he travels from Station $S_{k}$ to Station $T_{k}$ by taking lines.

However, JOI-kun is tired from a long journey. He wants to take a vacant train and get a seat. Thus, JOI-kun decided that he takes a train of a line at a station only if it is the $K$-th or earlier stop from the starting station of the line. In other words, if $A_{j}<B_{j}$, he can take a train of Line $j$ only at Station $A_{j}$, Station $A_{j}+1, \ldots$, Station $\min \left\{A_{j}+K-1, B_{j}-1\right\}$. If $A_{j}>B_{j}$, he can take a train of Line $j$ only at Station $A_{j}$, Station $A_{j}-1, \ldots$, Station $\max \left\{A_{j}-K+1, B_{j}+1\right\}$. JOI-kun will get out of the train at a station between the station next to where he takes the train and the terminal station, inclusive.

Under these conditions, JOI-kun wants to minimize the number of times of taking trains.
Given the information of the lines of IOI Railway Company and JOI-kun's plans, write a program which calculates, for each of JOI-kun's plans, the minimum number of times of taking trains needed for JOI-kun to achieve it.

## Input

Read the following data from the standard input. Given values are all integers.

$$
\begin{aligned}
& N K \\
& M \\
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{M} B_{M} \\
& Q \\
& S_{1} T_{1} \\
& S_{2} T_{2} \\
& \vdots \\
& S_{Q} T_{Q}
\end{aligned}
$$

## Output

Write $Q$ lines to the standard output. The $k$-th line $(1 \leq k \leq Q)$ should contain the minimum number of times of taking trains needed for JOI-kun to achieve the $k$-th plan. If it is not possible to achieve the $k$-th plan, output -1 .

## Constraints

- $2 \leq N \leq 100000$.
- $1 \leq K \leq N-1$.
- $1 \leq M \leq 200000$.
- $1 \leq A_{j} \leq N(1 \leq j \leq M)$.
- $1 \leq B_{j} \leq N(1 \leq j \leq M)$.
- $A_{j} \neq B_{j}(1 \leq j \leq M)$.
- $\left(A_{j}, B_{j}\right) \neq\left(A_{k}, B_{k}\right)(1 \leq j<k \leq M)$.
- $1 \leq Q \leq 50000$.
- $1 \leq S_{k} \leq N(1 \leq k \leq Q)$.
- $1 \leq T_{k} \leq N(1 \leq k \leq Q)$.
- $S_{k} \neq T_{k}(1 \leq k \leq Q)$.
- $\left(S_{k}, T_{k}\right) \neq\left(S_{l}, T_{l}\right)(1 \leq k<l \leq Q)$.


## Subtasks

1. (8 points) $N \leq 300, M \leq 300, Q \leq 300$.
2. ( 8 points) $N \leq 2000, M \leq 2000, Q \leq 2000$.
3. (11 points) $Q=1$.
4. (25 points) $K=N-1$.
5. (35 points) $A_{j}<B_{j}(1 \leq j \leq M), S_{k}<T_{k}(1 \leq k \leq Q)$.
6. (13 points) No additional constraints.

## Sample Input and Output

| Sample Input 1 | Sample Output 1 |
| :---: | :---: |
| 52 | 1 |
| 2 | 2 |
| 51 | -1 |
| 35 |  |
| 3 |  |
| 53 |  |
| 32 |  |
| 21 |  |

In the first plan, JOI-kun travels from Station 5 to Station 3. For example, this plan is achieved if JOI-kun takes a train of Line 1 at Station 5, and get out of the train at Station 3. In total, JOI-kun will take one train. Since it is impossible to achieve the plan by taking less than one train, output 1 in the first line.

In the second plan, JOI-kun travels from Station 3 to Station 2. For example, this plan is achieved if JOI-kun takes a train of Line 2 at Station 3, get out of the train at Station 4, takes a train of Line 1 at Station 4, and get out of the train at Station 2. In total, JOI-kun will take two trains. Since it is impossible to achieve the plan by taking less than two trains, output 2 in the second line.

In the third plan, JOI-kun travels from Station 2 to Station 1. Since it is impossible for JOI-kun to achieve this plan, output -1 in the third line.

This sample input satisfies the constraints of Subtasks $1,2,6$.

| Sample Input 2 | Sample Output 2 |
| :--- | :--- |
| 6 | 3 |
| 2 | 1 |
| 1 | 6 |
| 5 | 1 |
| 4 | -1 |
| 5 | 1 |
| 6 | 3 |
| 3 | 6 |
| 2 | 1 |

This sample input satisfies the constraints of Subtasks $1,2,6$.

| Sample Input 3 | Sample Output 3 |
| :--- | :--- |
| 6 | 5 |
| 4 | -1 |
| 3 | 1 |
| 2 | 4 |
| 5 | 3 |
| 4 | 6 |
| 5 |  |
| 1 | 5 |
| 3 | 2 |
| 2 | 6 |
| 6 | 3 |
| 5 | 4 |

This sample input satisfies the constraints of Subtasks 1, 2, 4, 6 .

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Final Round
February 13, 2022 (Online)

| Sample Input 4 | Sample Output 4 |
| :--- | :--- |
| 12 | 1 |
| 5 | -1 |
| 1 | 7 |
| 10 | 12 |
| 3 | 5 |
| 8 | 10 |
| 5 | 9 |
| 7 | 1 |
| 2 | 11 |
| 5 | 8 |
| 3 | 12 |
| 4 | 6 |
| 1 | 9 |
| 9 | 10 |
| 1 | 4 |

This sample input satisfies the constraints of Subtasks $1,2,5,6$.

