

Stone Arranging 2

JOI-kun has *N* go stones. The stones are numbered from 1 to *N*. The color of each stone is an integer between 1 and 10^9 , inclusive. In the beginning, the color of Stone *i* ($1 \le i \le N$) is A_i .

From now, JOI-kun will perform *N* operations. He will put the stones on the table in a line. The operation i $(1 \le i \le N)$ will be performed as follows:

- 1. JOI-kun will put Stone *i* on the immediate right of Stone i 1. However, when i = 1, JOI-kun will put Stone 1 on the table.
- 2. If there is a stone among Stones 1, 2, ..., i 1 whose current color is the same as Stone *i*, let *j* be the maximum index of such stones, and JOI-kun will paint all of Stones j + 1, j + 2, ..., i 1 with the color A_i .

In order to confirm whether the operations are correctly performed, JOI-kun wants to know in advance the colors of the stones after all the operations are performed.

Given information of the go stones, write a program which determines the colors of the stones after the N operations are performed.

Input

Read the following data from the standard input.

N A_1 A_2 \vdots A_N

Output

Write *N* lines to the standard output. The *i*-th line $(1 \le i \le N)$ should contain the color of Stone *i* after the *N* operations are performed.

Constraints

- $1 \le N \le 200\,000.$
- $1 \le A_i \le 10^9 \ (1 \le i \le N).$
- Given values are all integers.

Subtasks

- 1. (25 points) $N \le 2000$.
- 2. (35 points) $A_i \le 2 \ (1 \le i \le N)$.
- 3. (40 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
6	1
1	1
2	1
1	2
2	2
3	2
2	

Operation	The colors of the stones on the table	Explanation
1	1	Stone 1 is put on the table.
2	1,2	Stone 2 is put on the immediate right of Stone 1.
2	1, 2, 1	Stone 3 is put on the immediate right of Stone 2.
3	1, 1, 1	Stone 2 is painted in color 1.
4	1, 1, 1, 2	Stone 4 is put on the immediate right of Stone 3.
5	1, 1, 1, 2, 3	Stone 5 is put on the immediate right of Stone 4.
6	1, 1, 1, 2, 3, 2	Stone 6 is put on the immediate right of Stone 5.
	1, 1, 1, 2, 2, 2	Stone 5 is painted in color 2.

The operations are performed as in the following table.

Finally, the colors of Stones 1, 2, 3, 4, 5, 6 will be 1, 1, 1, 2, 2, 2, respectively. This sample input satisfies the constraints of Subtasks 1, 3.

Sample Input 2	Sample Output 2
10	1
1	1
1	1
2	1
2	1
1	1
2	1
2	1
1	1
1	2
2	

This sample input satisfies the constraints of all the subtasks.