2

Construction Project 2

There are N stations in JOI Kingdom, numbered from 1 to N. There are M train lines in JOI Kingdom, numbered from 1 to M. The train line $i(1 \leq i \leq M)$ connects station A_{i} and station B_{i} bi-directionally, and requires C_{i} minutes for travel.

You, a minister of JOI Kingdom, decided to construct a new train line as follows.

- You choose integers u and v, which satisfy $1 \leq u<v \leq N$. You construct a new train line, which connects station u and station v bi-directionally, and requires L minutes for travel. Note that you can choose 2 integers such that there already be a train line connecting station u and station v.

After you construct a new train line, the King of JOI Kingdom becomes happy if he can move from station S to station T within K minutes by using some train lines. Note that transit times and waiting times for train lines are not considered.

There are $\frac{N(N-1)}{2}$ ways when you choose 2 integers u and v, and you want to know how many of these ways make the King happy.

Write a program which, given information of stations, the train lines, and the King's request, calculates number of ways to choose 2 integers that make the King happy.

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N M \\
& S T L K \\
& A_{1} B_{1} C_{1} \\
& A_{2} B_{2} C_{2} \\
& \vdots \\
& A_{M} B_{M} C_{M}
\end{aligned}
$$

Output

Write one line to the standard output. The output should contain number of ways to choose 2 integers that make the King happy.

Constraints

- $2 \leq N \leq 200000$.
- $1 \leq M \leq 200000$.
- $1 \leq S<T \leq N$.
- $1 \leq L \leq 10^{9}$.
- $1 \leq K \leq 10^{15}$.
- $1 \leq A_{i}<B_{i} \leq N(1 \leq i \leq M)$.
- $\left(A_{i}, B_{i}\right) \neq\left(A_{j}, B_{j}\right)(1 \leq i<j \leq M)$.
- $1 \leq C_{i} \leq 10^{9}(1 \leq i \leq M)$.
- Given values are all integers.

Subtasks

1. (8 points) $L=1, K=2, C_{i}=1(1 \leq i \leq M)$.
2. (16 points) $N \leq 50, M \leq 50$.
3. (29 points) $N \leq 3000, M \leq 3000$.
4. (47 points) No additional constraints.

Sample Input and Sample Output

Sample Input 1	Sample Output 1	
7	8	
6	7	1
1	2	1
1	6	1
2	3	1
2	4	1
3	5	1
3	7	1
4	5	1
5	6	1

[^0]requires 1 minute for travel.
After you construct a new train line, it is possible to move from station 6 to station 7 in 2 minutes by using some train lines as follows. The King becomes happy because he can move from station 6 to station 7 within 2 minutes.

1. Move from station 6 to station 3 by using a train line which connects station 3 and station 6 bi-directionally. This takes 1 minutes.
2. Move from station 3 to station 7 by using a train line which connects station 3 and station 7 bi-directionally. This takes 1 minutes.

There are 4 ways to choose 2 integers that make the King happy, including this case. Therefore, output 4 . This sample input satisfies the constraints of Subtasks 1, 2, 3,4.

Sample Input 2	Sample Output 2	
3	2	
1	3	1
1	2	3
2	3	1

No matter how you choose the 2 integers, the King becomes happy. In other words, there are 3 ways to choose 2 integers that make the King happy. Therefore, output 3.

This sample input satisfies the constraints of Subtasks 1, 2, 3,4.
$\left.\begin{array}{|ll|l|}\hline \text { Sample Input 3 } & \text { Sample Output 3 } \\ \hline 6 & 4 & 0000000 \\ 2 & 5 & 100000000 \\ 1 & 2 & 1000000000 \\ 2 & 3 & 1000000000 \\ 2 & 4 & 1000000000 \\ 5 & 6 & 1000000000\end{array}\right]$

No matter how you choose the 2 integers, the King doesn't become happy. Therefore, output 0 .
This sample input satisfies the constraints of Subtasks 2,3,4.

Sample Input 4	Sample Output 4	
18	21	16
4	8	678730772 3000000062
5	13	805281073
8	17	80983648
3	8	996533440
10	16	514277428
2	5	57914340
6	11	966149890
8	12	532734310
2	9	188599710
2	3	966306014
12	16	656457780
16	18	662633078
1	15	698078877
2	8	665665772
2	6	652261981
14	15	712798281
7	13	571169114
13	14	860543313
6	754251187	
9	14	293590683
6	14	959532841
3	11	591245645

This sample input satisfies the constraints of Subtasks 2, 3, 4 .

[^0]: Suppose you choose $u=3, v=6$. You construct a new train line that connects station 3 and station 6 and

