

Road Service 2

In JOI city, there is a grid-shaped road network consisting of *H* infinitely long east-west roads and *W* infinitely long north-south roads. Intersection (i, j) $(1 \le i \le H, 1 \le j \le W)$ is the intersection where the *i*-th northernmost east-west road and the *j*-th westernmost north-south road cross.

Currently, part of the roads is closed due to poor road conditions. Specifically, the status of the roads is as follows:

- The segment in the *i*-th northernmost east-west road $(1 \le i \le H)$ connecting intersection (i, j) and intersection (i, j + 1) $(1 \le j \le W 1)$ is closed if $A_{i,j} = 0$ and passable if $A_{i,j} = 1$.
- The segment in the *j*-th westernmost north-south road $(1 \le j \le W)$ connecting intersection (i, j) and intersection (i + 1, j) $(1 \le i \le H 1)$ is closed if $B_{i,j} = 0$ and passable if $B_{i,j} = 1$.
- The other part of the roads (the part of roads outside the $H \times W$ intersections) is closed.

President K, the mayor of JOI city, decided to make a **repair plan** of the road network. A repair plan consists of zero or more **repairs**. A repair is done by choosing an integer *i* satisfying $1 \le i \le H$ and doing the following:

For every integer *j* satisfying $1 \le j \le W - 1$, make the segment in the *i*-th northernmost east-west road connecting intersection (i, j) and intersection (i, j + 1) passable (if it is closed). The repair takes C_i days. Note that C_i is either 1 or 2.

Since no two repairs in a repair plan can be done in parallel, the **period** of a repair plan is equal to the sum of the time taken by repairs consisting the repair plan.

President K thinks that securing the route between city facilities is important and asks you Q questions. The *k*-th questions $(1 \le k \le Q)$ is as follows:

Is there a repair plan that makes T_k intersections $(X_{k,1}, Y_{k,1}), (X_{k,2}, Y_{k,2}), \dots, (X_{k,T_k}, Y_{k,T_k})$ mutually reachable? If so, what is the minimum possible period of such a repair plan?

Write a program which, given the status of the road network, the days taken by repairing each east-west road and the details of the questions by President K, answers all the questions.

Input

Read the following data from the standard input.

```
H W Q
A_{1,1}A_{1,2} \cdots A_{1,W-1}
A_{2,1}A_{2,2} \cdots A_{2,W-1}
\vdots
A_{H,1}A_{H,2} \cdots A_{H,W-1}
B_{1,1}B_{1,2} \cdots B_{1,W}
B_{2,1}B_{2,2} \cdots B_{2,W}
\vdots
B_{H-1,1}B_{H-1,2} \cdots B_{H-1,W}
C_{1} C_{2} \cdots C_{H}
Query_{1}
Query_{2}
\vdots
```

Here, Query_k $(1 \le k \le Q)$ is as follows:

 T_k $X_{k,1} Y_{k,1}$ $X_{k,2} Y_{k,2}$ \vdots $X_{k,T_k} Y_{k,T_k}$

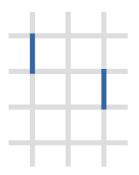
Output

Write *Q* lines to the standard output. In the *k*-th line $(1 \le k \le Q)$, output the minimum possible period, in days, of a repair plan that makes T_k intersections $(X_{k,1}, Y_{k,1}), (X_{k,2}, Y_{k,2}), \ldots, (X_{k,T_k}, Y_{k,T_k})$ mutually reachable if such a repair plan exists. Otherwise, output -1.

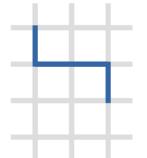
Constraints

- $2 \leq H$.
- $2 \leq W$.
- $H \times W \le 1\,000\,000.$
- $1 \le Q \le 100\,000.$
- $A_{i,j}$ is either 0 or 1 $(1 \le i \le H, 1 \le j \le W 1)$.
- $B_{i,j}$ is either 0 or 1 $(1 \le i \le H 1, 1 \le j \le W)$.
- C_i is either 1 or 2 $(1 \le i \le H)$.
- $2 \le T_k \ (1 \le k \le Q).$
- $T_1 + T_2 + \dots + T_Q \le 200\,000.$
- $1 \le X_{k,l} \le H \ (1 \le k \le Q, 1 \le l \le T_k).$
- $1 \le Y_{k,l} \le W \ (1 \le k \le Q, 1 \le l \le T_k).$
- $(X_{k,1}, Y_{k,1}), (X_{k,2}, Y_{k,2}), \dots, (X_{k,T_k}, Y_{k,T_k})$ are distinct $(1 \le k \le Q)$.
- Given values are all integers.

Subtasks


- 1. (10 points) $C_i = 1 \ (1 \le i \le H), \ Q \le 5, \ T_k = 2 \ (1 \le k \le Q), \ A_{i,j} = 0 \ (1 \le i \le H, 1 \le j \le W 1).$
- 2. (6 points) $C_i = 1 \ (1 \le i \le H), \ Q \le 5, \ T_k = 2 \ (1 \le k \le Q).$
- 3. (15 points) $C_i = 1 \ (1 \le i \le H), \ Q \le 5.$
- 4. (11 points) $C_i = 1 \ (1 \le i \le H), \ T_k = 2 \ (1 \le k \le Q).$
- 5. (6 points) $C_i = 1 \ (1 \le i \le H)$.
- 6. (12 points) $Q \le 5$.
- 7. (26 points) $T_k = 2 \ (1 \le k \le Q)$.
- 8. (14 points) No additional constraints.

Sample Input and Output


Sample Input 1	Sample Output 1
4 3 4	1
00	3
00	0
00	-1
00	
100	
001	
000	
1 1 1 1	
2	
1 1	
3 3	
2	
3 1	
1 2	
2	
2 3	
3 3	
2	
4 2	
3 2	

The figure below shows the current status of the road network. The gray part is closed, and the blue part is passable.

• In the first question, a repair with i = 2 will make the status of the road network as follows, and intersections (1, 1) and (3, 3) will be mutually connected.

The period of a repair plan consisting of this single repair is 1 day, and there is no repair plan with a shorter period that makes intersections (1, 1) and (3, 3) mutually reachable, so your program should output 1 in the first line.

- In the second question, three repairs with i = 1, 2, 3 respectively will make the intersection (3, 1) and (1, 2) mutually reachable. The period of a repair plan consisting of these three repairs is 3 days, and there is no repair plan with a shorter period that makes intersections (3, 1) and (1, 2) mutually reachable, so your program should output 3 in the second line.
- In the third question, the intersections (2, 3) and (3, 3) are already mutually reachable, so your program should output 0 in the third line.
- In the fourth question, there is no repair plan that makes intersections (4, 2) and (3, 2) mutually reachable, so your program should output -1 in the fourth line.

This sample input satisfies the constraints of Subtasks 1, 2, 3, 4, 5, 6, 7, 8.

Sample Input 2	Sample Output 2
4 4 4	1
100	3
110	2
011	2
010	
0010	
1001	
0101	
1 1 1 1	
2	
1 2	
3 1	
2	
1 4	
4 1	
2	
3 2	
1 2	
2	
4 3	
1 1	

This sample input satisfies the constraints of Subtasks 2, 3, 4, 5, 6, 7, 8.

Sample Input 3	Sample Output 3
7 3 3	3
10	2
00	4
00	
10	
00	
01	
00	
110	
101	
011	
001	
110	
100	
1 1 1 1 1 1 1	
3	
7 2	
3 1	
3 2	
3	
3 1	
6 3	
2 3	
7	
2 2	
1 3	
7 3	
5 2	
1 2	
72	
3 1	

This sample input satisfies the constraints of Subtasks 3, 5, 6, 8.

Sample Input 4	Sample Output 4
4 3 3	1
00	2
00	5
10	
00	
110	
011	
001	
1 2 2 2	
2	
1 1	
3 1	
2	
4 3	
2 1	
2	
4 1	
1 3	

This sample input satisfies the constraints of Subtasks 6, 7, 8.

Sample Input 5	Sample Output 5
7 3 2	4
01	1
00	
00	
00	
00	
10	
01	
100	
110	
011	
001	
101	
001	
1 1 2 1 1 2 2	
3	
7 2	
1 3	
5 1	
5	
1 1	
2 2	
3 1	
2 3	
4 2	

This sample input satisfies the constraints of Subtasks 6, 8.