The 2nd Japanese Olympiad in Informatics for Girls (JOIG 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

JOIG Tour

Do you know Just Odd Ink Way? It is a national road of length 10^{100} in Republic of EGOI from the east end to the west end. It is famous because there are several painting on the road painted by "Just Odd Ink." In the following, we abbreviate it, and call it JOI Way.

There are several painting of various sizes on JOI Way. Characters are written on some of them.
Rie is a tour guide working on JOI Way. She plans to guide the participants of JOIG Spring Training Camp. In order to cheer the participants, she plans to choose the paintings on which ' J ', ' 0 ', ' I ', ' G ' are written, and visit them in this order. There are N candidates of paintings. The i-th painting $(1 \leq i \leq N)$ is located at the place on JOI Way at a distance of A_{i} from the west end. In this painting, the character C_{i} is written.

Rie has Q plans. In the j-th plan $(1 \leq j \leq Q)$, she will travel as follows.

1. Rie starts a tour from the place on JOI Way at a distance of S_{j} from the west end.
2. She chooses a painting on which ' J ' is written, and moves to its location.
3. She chooses a painting on which ' 0 ' is written, and moves to its location.
4. She chooses a painting on which ' I ' is written, and moves to its location.
5. She chooses a painting on which ' G ' is written, and moves to its location.
6. She moves to the place on JOI Way at a distance of T_{j} from the west end, and finishes the tour.

During the tour, it is not allowed to go outside JOI Way.
Under the above conditions, Rie wants to minimize the total travel distance for each plan.
Write a program which, given information on the paintings on JOI Way and Rie's plans, calculates the minimum possible value of the total travel distance for each plan.

The 2nd Japanese Olympiad in Informatics for Girls (JOIG 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N \\
& A_{1} C_{1} \\
& A_{2} C_{2} \\
& \vdots \\
& A_{N} C_{N} \\
& Q \\
& S_{1} T_{1} \\
& S_{2} T_{2} \\
& \vdots \\
& S_{Q} T_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. The j-th line $(1 \leq j \leq Q)$ of the output should contain the minimum possible value of the total travel distance for the j-th plan.

Constraints

- $4 \leq N \leq 100000$.
- $1 \leq A_{i} \leq 1000000000000000\left(=10^{15}\right)(1 \leq i \leq N)$.
- $A_{i}<A_{i+1}(1 \leq i \leq N-1)$.
- $C_{i}(1 \leq i \leq N)$ is either ' J ', ' 0 ', ' I ', or ' G '.
- C_{i} is equal to ' J ' for at least one $i(1 \leq i \leq N)$.
- C_{i} is equal to ' 0 ' for at least one $i(1 \leq i \leq N)$.
- C_{i} is equal to 'I' for at least one $i(1 \leq i \leq N)$.
- C_{i} is equal to 'G' for at least one $i(1 \leq i \leq N)$.
- $1 \leq Q \leq 100000$.
- $1 \leq S_{j} \leq 1000000000000000\left(=10^{15}\right)(1 \leq j \leq Q)$.
- $1 \leq T_{j} \leq 1000000000000000\left(=10^{15}\right)(1 \leq j \leq Q)$.
- $\left(S_{j}, T_{j}\right) \neq\left(S_{k}, T_{k}\right)(1 \leq j<k \leq Q)$.
- N, Q are integers.
- A_{i} is an integer $(1 \leq i \leq N)$.
- S_{j}, T_{j} are integers $(1 \leq j \leq Q)$.

Subtasks

1. (4 points) $N \leq 80, \quad Q \leq 10$.
2. (10 points) $N \leq 500, \quad Q \leq 10$.
3. (6 points) $N \leq 3000, \quad Q \leq 100$.
4. (25 points) $N \leq 5000, \quad Q \leq 1000$.
5. (12 points) C_{i} is equal to ' 0 ' for a unique $i(1 \leq i \leq N), C_{j}$ is equal to 'I' for a unique $j(1 \leq j \leq N)$, and C_{k} is equal to ' G ' for a unique $k(1 \leq k \leq N)$.
6. (8 points) C_{i} is equal to ' 0 ' for a unique $i(1 \leq i \leq N)$, and C_{j} is equal to ' I ' for a unique $j(1 \leq j \leq N)$.
7. (20 points) C_{i} is equal to ' 0 ' for a unique $i(1 \leq i \leq N)$.
8. (15 points) No additional constraints.

Sample Input and Output

$\left.\begin{array}{|l|l|}\hline \text { Sample Input 1 } & \text { Sample Output 1 } \\ \hline 7 & 7 \\ 1 & \text { J } \\ 2 & 0 \\ 3 & \text { G } \\ 4 & \text { I } \\ 5 & 0 \\ 8 & \text { G } \\ 10 & \text { J } \\ 2 & \\ 3 & 2\end{array}\right]$

In the first plan, Rie starts a tour from the place on JOI Way at a distance of 3 from the west end, and finishes the tour from the place on JOI Way at a distance of 2 from the west end. For example, if she travels in the following way, the total travel distance becomes 7 .

1. She starts a tour from the place on JOI Way at a distance of 3 from the west end.
2. She moves to the west for a distance of 2 . She arrives at the place on JOI Way at a distance of 1 from the west end. She visits a painting of ' J '.
3. She moves to the east for a distance of 1 . She arrives at the place on JOI Way at a distance of 2 from the west end. She visits a painting of ' 0 '.
4. She moves to the east for a distance of 2. She arrives at the place on JOI Way at a distance of 4 from the west end. She visits a painting of ' I '.
5. She moves to the west for a distance of 1 . She arrives at the place on JOI Way at a distance of 3 from the west end. She visits a painting of ' G '.
6. She moves to the west for a distance of 1 . She arrives at the place on JOI Way at a distance of 2 from the west end, and finishes the tour.

Since 7 is the minimum possible value of the total travel distance, output 7 in the first line.
In the second plan, she starts a tour from the place on JOI Way at a distance of 7 from the west end, and finishes the tour from the place on JOI Way at a distance of 5 from the west end. For example, if she travels in the following way, the total travel distance becomes 12 .

1. She starts a tour from the place on JOI Way at a distance of 7 from the west end.
2. She moves to the east for a distance of 3 . She arrives at the place on JOI Way at a distance of 10 from the west end. She visits a painting of ' J '.
3. She moves to the west for a distance of 5 . She arrives at the place on JOI Way at a distance of 5 from the west end. She visits a painting of ' 0 '.
4. She moves to the west for a distance of 1 . She arrives at the place on JOI Way at a distance of 4 from the west end. She visits a painting of ' I '.
5. She moves to the west for a distance of 1 . She arrives at the place on JOI Way at a distance of 3 from the west end. She visits a painting of ' G '.
6. She moves to the east for a distance of 2. She arrives at the place on JOI Way at a distance of 5 from the west end, and finishes the tour.

Since 12 is the minimum possible value of the total travel distance, output 12 in the second line.
This sample input satisfies the constraints of Subtasks $1,2,3,4,8$.

The 2nd Japanese Olympiad in Informatics for Girls (JOIG 2021/2022)
Spring Training Camp/Qualifying Trial
March 20-23, 2022 (Komaba, Tokyo)
Contest 1 - JOIG Tour

Sample Input 2	Sample Output 2
10	13
5 J	19
70	20
10 J	21
11 G	
12 J	
13 I	
17 J	
18	J
19 J	
20	J
4	
49	
15	14
6	20
7	20

This sample input satisfies the constraints of all the subtasks.

Sample Input 3	Sample Output 3
10	25
1 G	27
2 J	28
3 G	17
4 0	26
7 G	39
9 J	30
10	G
14	I
17	G
19	G
7	
11	6
6	3
17	19
1	18
17	17
20	1
20	10

This sample input satisfies the constraints of Subtasks 1, 2, 3, 4, 6, 7, 8 .

Sample Input 4	Sample Output 4
10	12
3 J	17
5 G	15
6 I	15
7 I	19
8	J
9	I
10	0
14	G
16	I
19	J
6	12
4	4
20	3
18	5
15	4
20	11
10	8

This sample input satisfies the constraints of Subtasks 1, 2, 3, 4, 7, 8 .

The 2nd Japanese Olympiad in Informatics for Girls (JOIG 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Sample Input 5	Sample Output 5
12	583302366935305
179948747891578 I	805077987955000
263779425244614 I	591304613119987
320153642407146 G	757352272699625
383698990675423 J	478217003098189
478483318441339 J	869691499240121
505589213620811 G	805495866954969
507468309040564 0	1085532869547991
530441288489671 J	928541333618299
730036011088087 0	1205618838253516
896127332008998 I	
899298512463927 0	
915990785839829 J	
10	
744829561026263	366031656398270
700496830781726	684771674298690
314138534887378	222241904398827
695615197615084	632164325876673
418419052313523	409258287819812

This sample input satisfies the constraints of Subtasks $1,2,3,4,8$.

